Electrophysiological responses of maize roots to low water potentials: relationship to growth and ABA accumulation.
نویسندگان
چکیده
The maintenance of root elongation is an important adaptive response to low water potentials (psi(w)), but little is known about its regulation. An important component may be changes in root cell electrophysiology, which both signal and maintain growth maintenance processes. As a first test of this hypothesis, membrane potentials (E(m)) were measured within the cell elongation zone of maize (Zea mays L.) primary roots. Seedlings were grown in oxygenated solution culture, and low psi(w) was imposed by the gradual addition of polyethylene glycol. Cells hyperpolarized approximately 25 mV in response to low psi(w), and after 48 h resting potentials remained significantly hyperpolarized at psi(w) lower than -0.3 MPa compared with roots at high psi(w). Inhibitor experiments showed that the hyperpolarization was dependent on plasma membrane H(+)-ATPase activity. Previous work showed that accumulation of abscisic acid (ABA) is required for the maintenance of maize primary root elongation at low psi(w). To determine if the mechanism of action of ABA involves changes in root electrophysiology, E(m) measurements were made during long-term exposure to low psi(w). Steady-state resting E(m) were measured in regions in which maintenance of cell elongation was dependent on ABA accumulation (2-3 mm from the apex), or in which elongation was inhibited regardless of ABA status (6-8 mm from the apex). E(m) was substantially more negative in ABA-deficient roots specifically in the 2-3 mm region. The results suggest that set-points for ion homeostasis shifted in association with the maintenance of root cell elongation at low psi(w), and that ABA accumulation plays a role in regulating the ion transport processes involved in this response.
منابع مشابه
Increased Endogenous Abscisic Acid Maintains Primary Root Growth and Inhibits Shoot Growth of Maize
Roots of maize (Zea mays L.) seedlings continue to grow at low water potentials that cause complete inhibition of shoot growth. In this study, we have investigated the role of abscisic acid (ABA) in this differential growth sensitivity by manipulating endogenous ABA levels as an altemative to extemal applications of the hormone. An inhibitor of carotenoid biosynthesis (fluridone) and a mutant d...
متن کاملIncreased endogenous abscisic Acid maintains primary root growth and inhibits shoot growth of maize seedlings at low water potentials.
Roots of maize (Zea mays L.) seedlings continue to grow at low water potentials that cause complete inhibition of shoot growth. In this study, we have investigated the role of abscisic acid (ABA) in this differential growth sensitivity by manipulating endogenous ABA levels as an alternative to external applications of the hormone. An inhibitor of carotenoid biosynthesis (fluridone) and a mutant...
متن کاملModification of expansin transcript levels in the maize primary root at low water potentials.
We previously demonstrated that maintenance of cell elongation in the apical region of maize primary roots at low water potentials (psi(w)) was associated with an increase in expansin activity and extractable expansin protein. Here, we characterized the spatial pattern of expansin gene expression along the growing maize root and studied the effect of low psi(w) on expansin gene expression. Root...
متن کاملAbscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production.
Previous work showed that primary root elongation in maize (Zea mays L.) seedlings at low water potentials (psi(w)) requires the accumulation of abscisic acid (ABA) (R.E. Sharp, Y. Wu, G.S. Voetberg, I.N. Saab, M.E. LeNoble [1994] J Exp Bot 45: 1743-1751). The objective of the present study was to determine whether the inhibition of elongation in ABA-deficient roots is attributable to ethylene....
متن کاملThe effects of ABA on channel-mediated K(+) transport across higher plant roots.
The transport and accumulation of K(+) in higher plant roots is regulated by ABA. Molecular and electrophysiological techniques have identified a number of discrete transporters which are involved in the translocation of K(+) from the soil solution to the shoots of higher plants. Furthermore, recent reports have shown that ABA regulates K(+) channel activity in maize and Arabidopsis roots which...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of experimental botany
دوره 54 383 شماره
صفحات -
تاریخ انتشار 2003